当前位置:首 页 > 师资队伍 > 汪国平

汪国平

    汪国平      办公室:810      办公室电话:26550895

     深圳大学特聘教授,博士,电子科学与技术学院院长,国家杰出青年基金获得者,享受国务院特殊津贴,入选教育部新世纪优秀人才计划,深圳市国家级领军人才。四川大学博士,大阪大学博士后,东京工业大学、香港科技大学、南洋理工大学访问学者,曾任武汉大学二级教授、珞珈学者特聘教授。分别获国家自然科学奖二等奖,湖北省自然科学奖一等奖,国家级优秀教学成果奖二等奖、湖北省优秀教学成果奖一等奖,教育部首届全国高校优秀骨干教师奖等多项奖励,国家自然科学基金委信息科学部、数理科学部专家评审组成员,Electronics Letters 中文版编委,指导的博士生分别获得2009和2010年度全国优秀博士论文提名奖。主持国家杰出青年基金、国家重大科学研究计划项目课题、国家基金合作重点项目、教育部新世纪优秀人才项目等20余项。 在光学超材料、光学超分辨成像与传感、光学隐身、纳米光子学等前沿领域取得多项创新性研究成果,发表SCI 论文90多篇,包括Nature Commun、Phys. Rev. Lett.、Phys. Rev.B(Rapid Commun)、Appl. Phys.Lett.、Opt. Lett.、Opt Expr.、Nanoscale、Scientific Reports 50余篇,20余次国际学术会议邀请报告。作为国内唯一被邀请者,与美欧日等国科学家合著英文专著《Plasmonic Nanoguides and Circuits》一部。研究成果被包括Nobel奖获得者、美国工程院院士、德国科学院院士等在内的国际知名科学家在Rev. Mod. Phys.、Phys. Rep.、Chem. Rev.、Nat. Mater.、Nat. Photon.等20 余篇Review 和Nature、Phys. Rev. Lett.等研究论文上正面评价和引用,1篇论文被美国光学学会选为近10年来最好的20篇论文之一,多项成果分别被作为研究亮点、期刊封面、研究新闻报道或被评价为重大进展、开创性工作。

一、主要研究方向

1.光学超材料和超表面;
2.纳米集成光子器件与Plasmonics;
3.光学超分辨成像和生物特征检测;
4.生物精细微纳结构光传感器件;
5.微纳结构超快动力学的光学探测;
6.纳米材料的光、热、电特性与器件应用。

二、近几年主持的科研项目
1、国家自然科学基金项目(批准号:11574218,2016.01-2019.12,88.8万元)“可见光波段远场纳米光学成像器件:原理与验证”
2、国家自然科学基金项目(批准号:11274247,2013.01-2016.12,93万元)“光学波段隐身的新理论与新材料”
3、重大科学研究计划项目“量子点标记技术研究病毒“侵染”过程及宿主应答“子课题(批准号:2011CB933600,2011-2015, 100万元)
4、国家杰出青年基金项目(批准号:60925020,2010.01-2013.12, 200万元)“微纳光子器件”
5、国家自然科学基金合作重点项目(批准号:60736041,2008.01-2011.12, 70万元)“新型表面等子体光学金属纳米结构和器件的设计、制作和应用”
6、纳米重大科学研究计划项目子课题(批准号:2007CB935304,2007.7-2011.8;360万元)“纳米尺度亚光波长结构的制备、光学性质与器件研究”子课题“金属基亚光波长纳米结构的奇异光电性质研究” 

三、发表论文
1、Zi-Lan Deng, Shuang Zhang, and G. P. Wang*,Wide-angled off-axis achromatic metasurfaces for visible light. Opt. Exp. 24(20), 23118-23128 (2016)
2、X. L. Lin, C. W. Hsu, and G. P. Wang*, Frequency-selective omni-directional scattering of light by weakly disordered periodic planar arrays of dielectric particles. Opt. Exp. 24(20), 23136-23145 (2016)
3、Zi-Lan Deng, Tao Fu, Zhengbiao Ouyang, and G. P. Wang*, Trimeric metasurfaces for independent control of bright and dark modes of Fano resonances Applied Physics Letters 108, 081109 (2016)
4、Zi-Lan Deng, Shuang Zhang, and G. P. Wang*, A facile grating approach towards broadband,wide-angle and high-efficiency holographic metasurfaces Nanoscale 8, 1588 (2016)
5、K. D. Wu, Q. L. Cheng, and G. P. Wang*, Fourier analysis: from cloaking to imaging. J. Opt. 5, (Invited Review) (2016)
6、Zi-Lan Deng, Natesan Yogesh, Xiao-Dong Chen, Wen-Jie Chen, Jian-Wen Dong, Zhengbiao Ouyang, and G. P. Wang* , Full controlling of Fano resonances in metal-slit superlattice. Sci. Rep. 5:18461 | DOI: 10.1038/srep18461 (2015)
7、Tong Li, Saisai Wang, Xu-Lin Zhang, Zi-Lan Deng, Zhi Hong Hang, Hong-Bo Sun, and G. P. Wang*, Non-uniform annular rings-based metasurfaces for high-efficient and polarization- independent focusing. Appl. Phys. Lett. 107, 251107(2015)
8、S. L. Ding and G. P. Wang*, All-optical Transistors and Logic Gates using a Parity-time-symmetric Y-junction: design and simulation. J. Appl. Phys. 118, 123104 ( 2015)
9、K. D. Wu and G. P. Wang*, Spin-dependent diffraction of evanescent waves by subwavelength gratings. Opt. Lett. 40(16), 3707-3710 (2015)
10、Q. L. Cheng, K. D. Wu, Y. L. Shi, H. Wang, and G. P. Wang*, Directionally hiding objects and creating illusions above a carpet-like device by reflection holography. Sci. Rep. 5, 8581;| DOI: 10.1038/srep08581 (2015)
11、K. D. Wu, Q. L. Cheng, Y. L. Shi, H. Wang, and G. P. Wang*, Hiding scattering layers for noninvasive imaging of hidden objects. Sci. Rep. 5, 8375; DOI: 10.1038/srep08375 (2015)
12、S. L. Ding and G. P. Wang*, Extraordinary reflection and transmission with  direction dependent wavelength selectivity based on PT-symmetric multilayers. J. Appl. Phys. 117, 023104 (2015)
13、Y. Y. Zhang, Q. Kan, and G. P. Wang*, One-way optical transmission in silicon grating-photonic crystal structures.  Opt. Lett. 39 (16), 4934 ( 2014)
14、S. L. Ding and G. P. Wang*,Plasmonic analogues of Zitterbewegung in Nanoscale Metal Waveguide Arrays.  J. Opt. Soc. Am.B  31(3), 603-606  (2014)
15、L. Chen, T. Zhang, X. Li, and G. P. Wang, Plasmonic rainbow trapping by a grapheme monolayer on a dielectric layer with a silicon grating substrate. Opt. Express  21(23), 28628-28637(2013)
16、S.-L. Liu, J. Li, Z.-L. Zhang, Z.-G. Wang, Z.-Q. Tian, G. P. Wang, D.-W. Pang*, Fast and High-Accuracy Localization for Three-Dimensional Single-Particle Tracking. Sci. Rep. 3, 2462; DOI:10.1038/srep02462 (2013)
17、Q. L. Cheng, K. D. Wu, Y. L. Shi, H. Wang, and G. P. Wang*, Directionally Hiding Objects and Creating Illusions at Visible Wavelengths by Holography. Sci. Rep. 3, 1974; DOI:10.1038/srep01974 (2013)
18、K. D. Wu and G. P. Wang*, One-dimensional Fibonacci gratings for far-field super-resolution imaging. Opt. Lett. 38(12), 2032-2034 (2013) 
19、L. Chen, X. Li, and G. P. Wang, A hybrid long-range plasmonic waveguide with sub-wavelength confinement. Opt. Commun. 291, 400-404(15 March 2013) 
20、K. D. Wu and G. P. Wang*, Design and demonstration of temporal cloaks with and without the time gap. Opt. Express  21(1), 238-244(2013)
21、S. L. Ding and G. P. Wang*, Nonreciprocal optical Bloch-Zener oscillations in ternary parity-time-symmetric waveguide lattices. Appl. Phys. Lett. 100 (15),151913 (2012)
22、Y. Yang, A. Q. Liu, L. K. Chin, X. M. Zhang, D. P. Tsai, C. L. Lin, C. Lu, G. P. Wang and N. Zheludev, Optofluidic Waveguide as Transformation Optical Device for Lightwave Bending and Manipulation. Nature Commun. 3, 651 (2012)
23、L. Chen, X. Li, G. P. Wang, W. Li, S. Chen, L. Xiao, D. Gao,A silicon-based three-dimensional hybrid long-range plasmonic waveguide for nanophotonic integration. J. Lightwave Technology  30(1),163-168(2012)
24、Y. Shen, G. P. Yu, G. P. Wang, Slow light in one dimensional metallic-dielectric photonic crystals due to sign change of the effective dielectric constant. Appl. Phys. Lett.  99(22), 221916 (2011)
25、Q. L. Cheng, K. D. Wu, and G. P. Wang*, All dielectric macroscopic cloaks for hiding objects and creating illusions at visible frequencies. Optics Express  19 (23), 23240-23248 (2011)
26、K. D. Wu and G. P. Wang*, Transformation-optics-based nanopattern recognition. J Opt Soc. Am-B  28(10), 2524-2528 (2011) 
27、L. Chen, G. P. Wang, X. Li, W. Li, Y. Shen, J. Lai, S. Chen,Broadband slow-light in graded-grating-loaded plasmonic waveguides at telecom frequencies. Appl. Phys. B  104, 653-657(2011)
28、Y. Gu, Q. Z. Li,  and G. P. Wang*, Dielectric supported ring-shaped metal-disks on a metal film for ultrasensitive refractive index sensing. Opt. Lett. 36 (17), 3326-3328 (2011)
29、Q. Z. Li, W. H. Lin, and G. P. Wang*, An optical magnetic metamaterial working at multiple frequencies simultaneously. Appl. Phys. Lett.  99, 041109 (2011)
30、K. D. Wu, Q. L. Cheng, and G. P. Wang*, Fourier optics theory for invisibility cloaks. J. Opt. Soc. Am.-B  28(6), 1467-1474 (2011) 
31、Y. Shen, G. P. Wang, G. Yu, J. Fu, L. Chen, Multiple slow light bands in photonic crystal coupled resonator optical waveguides constructed with a portion of photonic quasicrystals. Physics Letters A 375, 712–715 (2011) 
32、Y. Gu, Q. Z. Li, J. Xiao,  K. D. Wu, and G. P. Wang*, Plasmonic metamaterials for ultrasensitive refractive index sensing at near infrared. J. Appl. Phys. 109(2), 023104(2011)
33、L. Chen, G. P. Wang*, Q. Gan, and F. J. Bartoli, Rainbow trapping and releasing by chirped plasmonic waveguides at visible frequencies. Appl. Phys. Lett. 97(15), 153115(2010)
34、K. D. Wu and G. P. Wang*, Hiding objects and creating illusions above a carpet filter using a Fourier optics approach. Optics Express 18(19), 19894-19901(2010)
35、Q. Z. Li and G. P. Wang*, Tunable photonic metamaterials in the near infrared frequencies. Optics Express 18(13), 14123–14128 (2010)
36、K. D. Wu and G. P. Wang*, General insight into the complementary medium-based camouflage devices from Fourier optics. Optics Letters 35(13), 2242-2244(2010)
37、G. P. Wang, Ch.5 Metal heterostructures in Plasmonic Nanoguides and Circuits. Ed. By S. I. Bozhevolnyi, Pan Stanford Publishing, Singapore (2009)
38、L. Chen, G. P. Wang*, Q. Gan, and F. J. Bartoli, Trapping of surface-plasmon polaritons in a graded Bragg structure: Frequency-dependent spatially separated localization of the visible spectrum modes. Phys. Rev. B (Rapid Commun.) 80(16), 161106(R) ( 2009)
39、Z. Kang, W. Lin, and G. P. Wang*, Dual-channel broadband slow surface plasmon polaritons in metal gap waveguide superlattices. J Opt Soc. Am-B 26(10), 1944-1948 (2009)
40、J. Zhang and G. P. Wang*, Determination of thickness and dielectric constant of thin films by dual-wavelength light beaming effect of a metal nanoslit. J. Appl. Phys. 106(3), 034305(2009)
41、Y. Shen and G. P. Wang*, Gain-assisted time delay of plasmons in coupled metal ring resonator waveguides. Optics Express 17(15), 12807-12812 (2009)
42、J. Zhang and G. P. Wang*, Simultaneous realization of transmission enhancement and directional beaming of dual-wavelength light by a metal nanoslit. Optics Express 17(12), 9543-9548 (2009)
43、L. Chen and G. P. Wang*, Pyramid-shaped hyperlenses for three-dimensional subdiffraction optical imaging. Optics Express  17(5), 3903-3912 (2009) 
44、Y. B. Long, J. Zhang, G. P. Wang, Femtosecond pump-probe techniqueassisted by surface plasmon resonance. Acta Physica Sinica 58, 7722 (2009)
45、Z. Kang and G. P. Wang*, Object distance-independent near-field subwavelength imaging of metal waveguide arrays. J. Opt. Soc. Am.-B  25(12), 1984-1987 (2008)
46、W. Lin, Y. Gu, and G. P. Wang*, Plasmonic Zener tunneling in metal gap waveguide superlattices. Appl. Phys. Lett. 93(13), 133118(2008) 
47、Y. Yang, Q. Li, and G. P. Wang*, Fabrication of periodic complex photonic crystals constructed with a portion of photonic quasicrystals by interference lithography. Appl. Phys. Lett. 93(6), 061112 (2008) 
48、J. Zhang and G. P. Wang*, Dual-wavelength light beaming from a metal nanoslit flanked by dielectric gratings. J. Opt. Soc. Am.-B  25(8), 1356-1361 (2008) 
49、L. Chen, X. Zhou, and G. P. Wang*, v-shaped metal-dielectric multilayers for far-field subdiffraction imaging. Appl. Phys. B  92, 127-131(2008)
50、Y. Yang, Q. Li, and G. P. Wang*, Design and fabrication of diverse metamaterial structures by holographic lithography. Optics Express 16( 15 ), 11275-11280 (2008) 
51、Y. Shen and G. P. Wang*, Optical bistability in metal gap waveguide nanocavities Optics Express 16(12),  8421-8426 (2008)
52、Z. Kang and G. P. Wang*, Coupled metal gap waveguides as plasmonic wavelength sorters  Optics Express 16 ( 11), 7680-7685 (2008)
53、W. Lin, X. Zhou, G. P. Wang*, and C. T. Chan, Spatial Bloch oscillations of plasmons in nanoscale metal waveguide arrays. Appl. Phys. Lett. 91(24), 243113 (2007) 
54、L. Chen and G. P. Wang*, Nanofocusing of light energy by ridged metal heterostructures. Appl. Phys. B  89(4), 573-577(2007)
55、W. Lin and G. P. Wang*, Metal heterowaveguide superlattices for a plasmonic analogue to electronic Bloch oscillations. Appl. Phys. Lett. 91(14), 143121 (2007)
56、Y. Yang. and G. P. Wang*, Two-dimensional photonic crystals constructed with a portion of photonic quasicrystals. Opt. Express 15, 5991-5996 (2007)
57、Y. Yang, S. Zhang, and G. P. Wang*, Single-beam holography for Ag nanoparticles-embedded two-dimensional binary metallodielectric photonic crystals. Appl. Opt. 46(1), 84-86 (2007) 
58、B. Wang and G. P. Wang*, Planar metal heterostructures for nanoplasmonic waveguides. Appl. Phys. Lett. 90(1), 013114( (2007) 
59、W. Lin, G. P. Wang*, J. C. W. Lee, and C. T. Chan, Reply to the Comment on “All-angle broadband negative refraction of metal waveguide arrays in the visible range: theoretical analysis and numerical demonstration.” Phys. Rev. Lett. 98(17), 179402(2007)
60、L. Chen, B. Wang, and G. P. Wang*, High efficiency 90 bending metal heterowaveguides for nanophotonic integration. Appl. Phys. Lett. 89(24), 243120(2006) 
61、J. Zhang, Q. Dai, and G. P. Wang*, Surface plasmon interferometric microscopy for three-dimensional imaging of dynamic processes. Opt. Lett. 31(20), 3004(2006)
62、B. Wang and G. P. Wang*, Plasmonic waveguide ring resonator at terahertz frequencies. Appl. Phys. Lett. 89 (13), 133106 (2006)
63、Y. Yang and G. P. Wang*, Realization of periodic and quasiperiodic microstructures with sub-diffraction-limit feature sizes by far-field holographic lithography. Appl. Phys. Lett. 89(11), 111104 (2006) 
64、X. Fan, G. P. Wang*, J. C. W. Lee, and C. T. Chan, All-angle broadband negative refraction of metal waveguide arrays in the visible range: theoretical analysis and numerical demonstration. Phys. Rev. Lett. 97(7), 073901(2006) 
65、G. P. Wang* and B. Wang, Metal heterostructures-based nanophotonic devices: Finite-difference time-domain numerical simulations. J. Opt. Soc. Am. B 23 (8), 1660-1665(2006) 
66、Y. Yang, S. Zhang, and G. P. Wang*, Fabrication of two-dimensional metallodielectric quasicrystals by single-beam holography. Appl. Phys. Lett. 88(25), 251104 (2006) 
67、B. Wang and G. P. Wang*, Confining light in two-dimensional slab photonic crystal waveguides with metal plates. Appl. Phys. Lett. 88 (19), 193128(2006)
68、X. Fan and G. P. Wang*, Nanoscale metal waveguide arrays as plasmon lenses. Opt. Lett. 31(9), 1322 (2006) 
69、L. Wu, Y. Zhong, K. S. Wong, G. P. Wang*, and L. Yuan, Fabrication of hetero-binary and honeycomb photonic crystals by one-step holographic lithography. Appl. Phys. Lett. 88(9),091115(2006) 
70、L. An and G. P. Wang* Triple-periodical multilayer films for multichannel ultranarrow band filters. Chin. Phys. Lett. 23(2)388-391(2006)
71、B. Wang and G. P. Wang*, Directional beaming of light from a nanoslit surrounded by a metallic heterostructure. Appl. Phys. Lett. 88(1), 013114(2006) 
72、B. Wang and G. P. Wang*, Simulations of nanoscale interferometer and array focusing by metal heterowaveguides. Opt. Express, 13(26), 10558-10563 (2005) 
73、B. Wang and G. P. Wang*, Plasmon Bragg reflectors and nanocavities on flat metallic surfaces. Appl. Phys. Lett. 87(1), 013107(2005) 
74、L. Wu, Y. Zhong, C. T. Chan, K. S. Wong*, and G. P. Wang, Fabrication of Large Area Two- and Three-dimensional Polymer Photonic Crystals Using Single Refracting Prism Holographic Lithography. Appl. Phys. Lett. 86(24), 241102 (2005) 
75、Y. Yang, G. P. Wang*, J. Xie, and S. Zhang, Metal nanoparticles-embedded three-dimensional microstructures created by single-beam holography. Appl. Phys. Lett  86 (17), 173108(2005) 
76、W. H. Lin, G. P. Wang*, and S. H. Zhang, Design and fabrication of omnidirectional reflectors in the visible range. J. Mod. Opt.  52 (8),1155-1160(2005)
77、Y. B. Long,  L. Song, C. Y. Li, C. Y. Zhang, G. P. Wang, S. S. Xie, L. Wang, P. M. Fu, Z. G. Zhang, Revealing two-competing processes in carrier dynamics of single-walled carbon nanotube films. Chem. Phys. Lett. 405 (4-6): 300-303 (2005) 
78、B. Wang and G. P. Wang*, Metal heterowaveguides for nanometric focusing of light. Appl. Phys. Lett. 85(16), 3599-3601 (2004) 
79、B. Wang and G. P Wang*, Surface plasmon polariton propagation in nanoscale metal gap waveguides. Opt. Lett. 29 (17),1992-1994(2004) 
80、G. P. Wang, Y. Yi, and W. Lin, Tunable and omnidirectional photonic band gap properties of one-dimensional photonic crystals fabricated by holography. J. Opt. Soc. Am. B 21(3), 554-561 (2004) 
81、G. P. Wang, Y. Yi, and B. Wang, Evanescent coupling of transmitted light through an array of holes in a metallic film assisted by transverse surface current. J. Phys: Condens Matter 15(47), 8147-8156(2003)
82、L. Yuan, G. P. Wang*, and X Huang, All arrangements of four beams for any Bravais lattice. Opt. Lett.  28(19), 1769-1771(2003)
83、G. P. Wang, C. Tan, and Y. Yi,Holography for one-step fabrication of three-dimensional metallodielectric photonic crystals with a single continuous wavelength laser beam. J. Mod. Opt. 50(14), 2155-2161(2003) 
84、G. P. Wang, T. Sigura, and S. Kawata, Holography with surface plasmon coupled waveguide modes. Appl. Opt., 40 (22), 3649 (2001) 

返回
顶部